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Mixed-Discrete Fuzzy Multiobjective Programming for
Engineering Optimization Using Hybrid Genetic Algorithm
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Although much attention has been focused on the development and applications of fuzzy optimization, multi-
objective programming, and mixed-discrete optimization methods separately, fuzzy multiobjective optimization
problems in mixed-discrete design space have not been addressed in the literature. It is mainly because of the lack of
mature and robust theories of mixed-discrete and multiobjective optimization. In most practical applications, de-
signers often encounter problems involving imprecise or fuzzy information, multiple objectives, and mixed-discrete
design variables. A new method is presented in which the fuzzy λ formulation and game theory techniques are
combined with a mixed-discrete hybrid genetic algorithm for solving mixed-dixcrete fuzzy multiobjective program-
ming problems. Three example problems, dealing with the optimal designs of a two-bar truss, a conical convective
spine, and a 25-bar truss, demonstrate that the method can be flexibly and effectively applied to various kinds of
engineering design problems to obtain more realistic and satisfactory results in an imprecise environment.

Nomenclature
D = fuzzy feasible solution domain
d = favorable search direction
Fiti (X) = fitness function
fi (X) = i th objective function
f max
i = upper bound of i th objective function

f min
i = lower bound of i th objective function

G j = allowable interval of the constraint function g j

g j (X) = j th inequality constraint function
k = number of objective functions
M = size of the population
m = number of inequality constraints
n = total number of design variables
nd = number of discrete design variables
nq = number of discrete design variables with

equal spacing
X = design vector
Xc = centroid of the composite polygon
Xw = vertex with the lowest fitness value
xi = i th design variable
µD(X) = membership function of the design vector
µfi(X) = membership function of the i th objective
µgj(X) = membership function of the j th constraint

I. Introduction

T HE multiobjective optimization problems were originally in-
vestigated in the field of mathematical economics. The earliest

reported in-depth work appears to be that of Kuhn and Tucker.1

Since then, a variety of techniques and applications of multiobjec-
tive optimization have been developed. Because no unique solution
exists that would be optimum for all of the individual objective func-
tions simultaneously, a concept known as Pareto optimality, which
is different from the optimality concept used in scalar optimization,
has been used in most of the available multiobjective optimization
methods.
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Most design problems, traditionally, are stated in precise math-
ematical forms. However, it is recognized that most phenomena
encountered by designers and decision makers would take place in
a fuzzy environment in which the statements might be uncertain,
vague, fuzzy, or imprecise. (The terms uncertain, vague, fuzzy, and
imprecise are used to mean the same in the context of this paper.) This
might be caused by different reasons: designers might not be able
to express their objectives precisely because their utility functions
are not definable precisely, or the phenomena of the engineering
problem might be described only in a fuzzy way. For instance, in
control system design the forcing frequency is expected to be “sub-
stantially away” from the natural frequency of the system, and in the
thermal design of buildings, the design temperature or “comfortable
temperature” is subjective and is not precisely defined. Generally
uncertain variables or quantities in optimization problems are de-
scribed using terms such as high, large, essentially, and roughly. All
of these terms represent fuzzy information. Usually it is difficult to
describe the goals and constraints of optimization problems related
to such systems by crisp relations through equations and/or descrip-
tions. It is possible that a small violation of a given constraint can
lead to a more efficient and practical solution of the problem. So it
is more reasonable that there should be transition stages from abso-
lute permissibility to absolute impermissibility when the allowable
interval of a physical variable is determined, that is, the ordinary
subset should be replaced by a fuzzy subset along the real axis. The
fuzzy set formulation represents, in fact, a subjective estimation of
a possible effect of a given result on the objective function and con-
straints. From this point of view, a fuzzy set provides a model to
express fuzzy relationships as just described and permits the incor-
poration of vagueness in the conventional set theory, which can be
used to deal with uncertainty quantitatively. It was proven to be an
efficient tool, and the mathematical developments have provided the
theoretical basis necessary for use in practical applications.

The fuzzy set theory was initiated by Zadeh2 in 1965, and the
concept of fuzzy optimization was first introduced by Bellman and
Zadeh3 in their seminal paper on decision making in a fuzzy environ-
ment, in which the concepts of fuzzy constraint, fuzzy objective, and
fuzzy decision were introduced. These concepts were subsequently
profusely used by most investigators. Fuzzy optimization is a flexi-
ble approach that permits a more adequate solution of real problems
in the presence of vague information. In the last two decades the
principles of fuzzy optimization were critically studied, and the
technologies and solution procedures have been investigated within
the scope of fuzzy sets. Today, similar to the developments in crisp
optimization, different kinds of mathematical models have been pro-
posed, and many practical applications have been implemented to
solve fuzzy optimization problems in the various engineering fields,
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such as mechanical design and manufacturing,4−6 power systems,7,8

water resources research,9,10 and control systems.11−13

Recently, much attention has been paid in developing fuzzy pro-
gramming techniques for multiobjective optimization problems.
Buckley14 presented a method of using fuzzy programming, through
the use of either the min or the product operator, which can be
used to generate the whole Pareto optimal set for nonlinear concave
(or convex) multiobjective programming problems. Kassem15 re-
searched multiobjective nonlinear programming (MONLP) prob-
lems with fuzzy parameters in the objective functions using the
concept of α-pareto optimality without differentiability. The stabil-
ity of multiobjective nonlinear programming problems with fuzzy
parameters in the objective and constraint functions was discussed
in Refs. 16 and 17. Mohan and Nguyen18 elaborated an interactive
satisfying method used to solve linear as well as a class of nonlin-
ear multiobjective problems in mixed fuzzy-stochastic environment
involving various kinds of uncertainties related to fuzziness and/or
randomness.

Several studies on the optimization of uncertain engineering sys-
tems using different approaches have been reported in the litera-
ture. For example, Refs. 19 and 20 modeled the uncertainty using
probabilistic/reliability approaches in the optimization of engineer-
ing systems. A physical programming approach was used by Messac
and his associates in Refs. 21 and 22. An evidence-based uncertainty
model was used by Chen and Rao23 for the multicriteria optimization
of mechanical systems. Rao and Dhingra24 considered the problem
of reliability allocation and redundancy apportionment for multi-
stage systems with components having time-dependent reliability,
using crisp and fuzzy MONLP optimization approaches coupled
with heuristic procedures. A cooperative fuzzy game theoretic ap-
proach to multiple objective design optimization was also proposed
by them.25 Several computational models, including simple addi-
tive, weighted additive, and preemptive priority models, were given
in a fuzzy nonlinear goal programming approach, and the method-
ologies were illustrated with the help of two structural optimization
problems involving multiple goals.26 Further, an attempt was made
in Ref. 27 to apply genetic algorithms and goal programming to solve
problems involving multiple objectives and imprecise information.

Sakawa has conducted research in the field of multiobjective
fuzzy nonlinear programming. He investigated various fuzzy meth-
ods for solving multiobjective nonlinear programming problems,
including 1) fuzzy dual decomposition method,28 by formulating
the dual problem of the original problem based on dual decom-
position technique, and deriving a compromising solution of the
decision maker based on a fuzzy decision; 2) primal decomposition
method,29 by introducing a right-hand-side allocation vector and
a two-level optimization algorithm to derive a satisfying solution;
3) interactive fuzzy satisfying method,30−33 by eliciting correspond-
ing membership functions through interaction with the decision
maker, considering current membership values as well as tradeoff
rates, updating reference membership values, and deriving a satis-
fying solution from among a Pareto-optimal solution set, and the
combination of interactive fuzzy satisfying method and floating-
point genetic algorithm34 was also proposed to solve multiobjective
nonconvex programming problems.

Although several efforts have been made in the development and
applications of multiobjective optimization techniques in a fuzzy
environment, fuzzy multiobjective optimization problems in mixed-
discrete design space were not attempted in the literature. It is mainly
because of the lack of mature and robust theories of mixed-discrete
optimization that can be coupled with fuzzy multiobjective opti-
mization techniques. However, in real-life projects decision makers
are often forced to face such kind of design problems. It is, therefore,
practical to appropriately develop a robust and effective method that
can integrate reliable mixed-discrete and multiobjective optimiza-
tion algorithms into a suitable fuzzy programming technique.

In this work, a new programming method is presented, in which
the fuzzy λ formulation coupled with the game theory technique
is combined with a new mixed-discrete hybrid genetic algorithm
(MDHGA) for solving mixed-discrete fuzzy multiobjective pro-
gramming (MDFMP) problems.

II. MDFMP Approach
A multiobjective optimization problem in the mixed-discrete de-

sign space can be stated as follows:
Find X , which minimizes

f (X) = [ f1(X), f2(X), . . . , fk(X)]T (1)

subject to

g j (X) ≤ b j , j = 1, 2, . . . , m

X = [x1, . . . , xnq, . . . , xnd, . . . , xn]T

x L
i ≤ xi ≤ xU

i , i = 1, 2, . . . , n

When expressed in a fuzzy environment, this problem can be for-
mulated as follows:

Find X , which minimizes

f (X) = [ f1(X), f2(X), . . . , fk(X)]T (2)

subject to

g j (X) ∈ G j , j = 1, 2, . . . , m

X = [x1, . . . , xnq, . . . , xnd, . . . , xn]T

x L
i ≤ xi ≤ xU

i , i = 1, 2, . . . , n

If both the objectives and constraints are fuzzy, a fuzzy multiobjec-
tive optimization problem can be scalarized so that a fuzzy single
objective optimization approach with mixed-discrete variables can
be used for its solution. The procedure consists of the following two
steps:

In the first step, suitable membership functions are determined
for each of the objectives and constraints, such that the degree of
satisfaction of the objectives and constraints can be measured in a
quantitative manner. In this work, the construction of membership
functions is based on the techniques of game theory.

In the second step, a single-objective mathematical model is gen-
erated for crisp mixed-discrete optimization. By defining a fuzzy
feasible solution domain D corresponding to the objective func-
tions and the constraints as

D =
{

k⋂
i = 1

µfi(X)

}
∩

{
m⋂

j = 1

µgj(X)

}
(3)

the membership function of a design vector is given by

µD(X) = min
i, j

{µfi(X), µgj(X)} (4)

A design vector X is said to be feasible if µD(X) > 0. The member-
ship function µD(X) describes an overall degree of satisfaction of
any design vector to all of the objective functions and constraints in
the fuzzy feasible domain D. The optimum solution is selected to
yield the maximum value of µD such that

µD(X∗) = max µD X = max{min[µfi(X), µgj(X)]} (5)

This max-min problem can then be solved by using the fuzzy
λ-formulation technique35 that can be stated mathematically as
follows:

Minimize

−λ

subject to

λ ≤ µfi(X), i = 1, . . . , k

λ ≤ µgj(X), j = 1, . . . , m (6)
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A. Membership Functions
The selection of the membership functions of objectives and

constraints in multiobjective programming is based on engineering
judgment and physical insights of the problem as well as the needs
of the design. Different shapes of objective membership functions
formulated with different sets of ( f min, f max) usually yield different
results. Thus it is very important to determine the appropriate func-
tions ofµfi(X). To constructµfi(X), a lower bound f min

i and an upper
bound f max

i of each objective should be determined. Reference 36
gives more illustrations on the construction of the mixed-discrete
objective membership functions and concludes that the objective
membership function composed of ( f min

d , f max
d ) that are obtained

in the discrete design space is often the best choice. But there are
still several options for the value of f max

d : it can be represented by
the absolute maximum value of the corresponding objective in dis-
crete design space, or it can be represented by the relative maximum
value of the objective when referencing the optimum solutions of
other objectives. In this work, the construction of µfi(X) is based
on the cooperative game theory technique, which can be described
as follows:

1) Find the solutions of the individual single-objective optimiza-
tion problems in discrete design space.

2) Determine the best and worst solutions possible for each of the
objective functions.

3) Use these solutions as boundaries of fuzzy ranges in the cor-
responding fuzzy optimization problems.

4) Construct fuzzy objective membership functions using a linear
expression.

B. Mixed-Discrete Hybrid Genetic Algorithm
Genetic algorithms (GAs) are recently developed optimiza-

tion techniques that were originally introduced by Holland37 in
1975. GAs are heuristic combinatorial search techniques based
on the concepts of natural genetics and Darwinian survival of
the fittest. Since their introduction as a method of optimiza-
tion, GAs have been efficiently applied to commerce, engineer-
ing, mathematics, medicine, and pattern recognition with promising
results.

In GAs, design variables are usually coded into binary strings.
Starting with a fixed-size subset of solutions called the population,
a sequence of operations, simulating a natural evolution process
and consisting of selection, crossover, and mutation, is applied to
the population to generate a new one with higher fitness value, which
means that better designs are obtained. Such a sequence of opera-
tions constitutes what is called a generation. Generations are then
applied repeatedly until some stopping criterion is met. A number
of studies have been made to establish not only an intuitive conver-
gence of the method, but also a rigorous mathematical convergence
proof.38 The flexibility, globality, parallelism, simplicity, versatil-
ity, and good problem solving capability are attractive advantages
that make GAs very useful and successful in the mixed-discrete
engineering optimization field.

GAs are a family of algorithms that have the same basic structure
and differ from one another with respect to the strategies and pa-
rameters used to control the search. Often the choice of parameters,
such as population size, crossover probability and mutation prob-
ability, can have a significant impact on the effectiveness of GAs,
that is, each combination of the parameters can result in a different
optimum solution. It is a troublesome task to tune these adjustable
parameters if we want to obtain acceptable solutions. Another disad-
vantage of GAs is their high computational cost, especially with the
finite element analysis of large-scale problems, in which the number
of function evaluations required for a global optimum result is very
large.

To overcome these shortcomings of traditional GAs, a MDHGA
is proposed in this paper for solving mixed-discrete optimization
problems. This algorithm not only possesses all features of the tra-
ditional GAs but also has some distinguishable characteristics and
advantages in terms of design variables, crossover, mutation, and
regeneration operations.

1. Treatment of Design Variables
Three kinds of design variables involved in this work are handled

using the following mapping functions:
1) Discrete variables with equal spacing

xi = x L
i + (Ni − 1) dspi , i = 1, . . . , nq (7)

2) Discrete variables with unequal spacing

xi = qNi ,i−nq, nq < i ≤ nd (8)

3) Continuous variables

xi = x L
i + (Ni − 1)εi , nd < i ≤ nn (9)

where nn is the number of design variables, Ni is the natural number
corresponding to xi , dspi is the characteristics of discrete variable,
defined as

dspi =




discrete increment of the i th discrete
variable with equal spacing, 1 ≤ i ≤ nq

discrete number of the i th discrete
variable with unequal spacing, nq ≤ i ≤ nd

q represents the matrix of values of discrete variables with unequal
spacing, of dimension w∗(nd − nq), and w is the maximum permis-
sible amount of discrete values among all discrete variables with
unequal spacing.

Corresponding to each variable xi , only one value of Ni exists.
Thus, the problem of finding the optimal design variables can be
transformed into that of finding the optimal values of Ni . Thereupon,
all operations of the iterative procedure are to determine suitable
values of Ni , which in turn can be used to obtain the physical values
of the design variables.

2. MDHGA Scheme
The mixed-discrete hybrid genetic algorithm can be summarized

by the following steps:
1) Binary encoding of the problem: Each design variable Ni is ex-

pressed as a finite length binary digit string. These strings represent
artificial chromosomes and every digit in the string is an artificial
gene.

2) Initialization of population: The size of the population M is
predefined and fixed throughout. The initial population is created
randomly within the feasible design space.

3) Evaluation of population: The fitness is a quality value that is a
measure of the reproductive efficiency of living creatures according
to the principle of survival of the fittest. In the genetic algorithm, the
fitness function is chosen as a measure of goodness to be maximized.
The fitness function used to evaluate individual is chosen as

φ j [X ] = f j [X ] + R
m∑

i = 1

max{0, gi, j }, j = 1, . . . , M

Fit j [X ] = 1/|φ j [X ] − C |, j = 1, . . . , M (10)

where R is a large enough positive constant (whose value is assumed
at the beginning of the computations) and C is a small enough
negative constant to make the fitness function large enough during
computations. The larger the fitness value, the better the individual.

4) Selection: Some pairs of strings are randomly selected as par-
ents to reproduce offsprings based on the selection rule. For this,
the candidates are sorted according to their fitness. The crossover
rate is predefined such that a fixed proportion of the population is
randomly generated. Each random number is transformed into an
ordinal number of the ranked candidates according to Eq. (11), and
the corresponding string is selected as crossover parents of the next
generation:

p1 = (ps − 1) · r 1.5 + 0.5, p1 = 〈p1〉 (11)
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where ps is the size of population, r the random number, p1 is the
ordinal number, and the operator 〈 〉 denotes the integerization of
p1.

5) Crossover: Three different operators are to be considered. The
first one can be called the single-point crossover strategy in which
the binary strings of two parents are to be cut at a randomly chosen
position and two offsprings are reproduced. The first of them inher-
its the previous part of mother’s and latter part of father’s binary
string, and the second is exactly the reverse. The following example
illustrates the procedure:

Parents

0101 | 0010

1010 | 1001

Offspring

0101 | 1001

1010 | 0010

The second strategy is called the two-point crossover that involves
randomly choosing two crossover sites in the binary strings of par-
ents and exchanging the digits between the two sites. An example
of this strategy is given next:

Parents

01 | 0100 | 10

10 | 1010 | 01

Offspring

01 | 1010 | 10

10 | 0100 | 01

The last operator is referred to as the random multipoint crossover
strategy in which more points are randomly chosen, which cut the
binary strings of parents into several segments. Some segments of
father string can be exchanged with those of mother string. An
example is given here:

Parents

01010010

10101001

Offspring

01100001

10011010

In practical applications, it was found that when the population
size is large enough (n ≥ 100), there is no notable difference in
the efficiencies of the solutions among these three strategies. If the
population size is comparatively small, the multipoint crossover has
the highest efficiency, followed by the two-point crossover, with the
one-point crossover having the lowest efficiency. Figure 1 shows a
comparison of their efficiencies with respect to the population size,
derived from the numerical experimentation of 33 mixed-discrete
engineering optimization problems.39

6) Mutation: As stated earlier, mutation is the occasional random
alteration on a bit-by-bit basis. Similar to the crossover, there are
three mutation operators.

Single-point mutation:

11001001 ⇒ 11000001

Two-point mutation:

110 | 010 | 01 ⇒ 110 | 101 | 01

Multipoint mutation:

11001001 ⇒ 11111010

Fig. 1 Comparison of the three crossover strategies.

Fig. 2 Shrink direction.

Fig. 3 Shrinking of feasible search region.

Often, the multipoint random mutation proves to be the best choice
in this step.

7) Population regeneration: Combine parent population and their
offspring into a whole population, sort them in the order from the
highest fitness value to the lowest, and select the first M individuals
to obtain a new population. The new population is then used to repeat
steps 4–7 until the population generated tends to have a stable fitness
value; and then go to step 8.

8) Determination of the shrink direction: Once a stable popula-
tion is obtained, a composite algorithm is applied to find a search
direction along which the optimum point can be approached and
the feasible region can be shrunken. The composite has some dif-
ferent expressions.40,41 Here assuming the population as vertices of
a composite polygon and vertex Xw as the worst point with the low-
est fitness value, vertex Xc that corresponds to the centroid of all
vertices except Xw can be defined as

Xc = 1

k − 1

k∑
i = 1

Xi , Xi 
= Xw (12)

A shrink direction for feasible region shown as Fig. 2 can then be
determined as

d = Xc − Xw

‖Xc − Xw‖ (13)

This equation takes all individuals into account, better reflects the
ecological environment (the distribution and development trend) of
the whole population, and hence can work as a favorable search
direction.

9) Shrinking of feasible search region: The best individual is taken
as the center of the search region, and the feasible region is reduced
along the favorable search direction d, ensuring that the optimum
point lies within the reduced region.

Set ri1 as the range of the i th variable before the region is shrunk,
ri2 as the range after the region is shrunk, r+

i as the range along the
+di direction, and r−

i as the range along the −di direction, and as
shown in Fig. 3, we have

ri2 = r+
i + r−

i (14)

γi = ri2/ri1 (15)

βi = r+
i /r−

i (16)

r+
i and r−

i can be expressed as

r+
i = (γiβi ri1)

(βi + 1)
(17)

r−
i = (γi ri1)

(βi + 1)
(18)
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Equations (14–18) indicate that if γi and βi are known, r+
i and r−

i
can be derived, and also the range ri2 will be known. In this research
γi is determined according to the following equations:

dmin = min{|di |, i = 1∼n} (19)

γi = min{1.0, R A|di |/dmin}, i = 1∼n (20)

where di is the i th component of the vector d and R A is the value of
γ corresponding to dmin. The numerical test of 33 examples found
that when βi changes between 1 and ∼3 and R A changes between
70 and ∼95% they will have an influence only on the search speed of
the algorithm, but not on the optimal results. It was also found that
the value of R A can be decreased for problems with fewer design
variables and/or constraints and increased for those with more design
variables and/or constraints. In the developed algorithm, βi = 2 is
fixed, and R A is chosen as 85%.

After the new shrunk region is determined, the search goes back
to step 2 to repeat the iterative procedure.

10) Finding the optimal solution: When the search region shrinks
to a small region within an acceptable precision, the population fit-
ness value will become stable. The best individual of the population
is chosen as the starting point for the deterministic discrete itera-
tive method that is used to replace GA to find the final optimum
result. The hybrid negative subgradient method combined with dis-
crete one-dimension search is used for this search procedure, and
the details can be found in Ref. 39.

3. Analysis of MDHGA
Compared with other GAs used in mixed discrete optimization,

the MDHGA not only possesses all features of the GAs but has some
distinguishable characteristics and advantages that can be summa-
rized as follows:

1) The MDHGA combines the advantages of random search and
deterministic search methods. The GA is used mainly to determine
the optimal feasible region surrounding the global optimum point;
and the hybrid negative subgradient method integrated with discrete
one-dimension search is subsequently used to replace the GA to
find the final optimum solution because the deterministic iterative
method usually has faster convergence speed and higher compu-
tational efficiency compared to the random search method when
searching within a fixed small discrete space.

2) The MDHGA uses multipoint crossover and mutation strategy
to generate the offspring population that can obtain better fitness
values than the regular GAs and speed up the search procedure.
This strategy has been proven to have the best ratio of success from
numerical experiments.

3) The MDHGA can reduce the computational expense by grad-
ually shrinking the feasible region along the favorable search direc-
tion, leading to an algorithm with higher effectiveness and efficiency
compared to the regular GAs.

4) The MDHGA can ensure from the following aspects that the
global optimal point lies within the gradually reduced search regions
to a maximum extent:

a) Consider the worst condition in which the population is evenly
distributed throughout the reduced region all of the time during the
whole search procedure. Assume the value of the minimum shrink
ratio R A as 85%. It means that the probability of the optimal point
lying within the shrunk region is at least 85%; and often this proba-
bility can guarantee the presence of the global optimum solution in
the reduced search region.

b) Before beginning shrinking the search region, the operations
of crossover and mutation have already been repeated many times,
resulting in the stable trend of the population to the optimal solu-
tion. The determination of the shrinking direction also indicates the
approximate distribution location of the optimal solution. Reducing
the search region at this time can avoid that the next GA operations
still work within those regions not covering the optimal point, and
hence enhances the computational efficiency.

c) Even if the optimal point is not within the current reduced
region, the center point of the search (also the best individual in the

population) is continually adjusted to approach the optimal point,
which, again, causes the optimal point to be included into the new
reduced regions.

5) The algorithm can provide a better initial feasible point for
other well-established methods so that their reliability and efficiency
can be further improved.

4. Performance Study
An experimental study on MDHGA method can provide an over-

all evaluation of the performance of the algorithm, indicate the most
appropriate fields of application, and provide valuable feedback
information to further improve the structure and efficiency of the
algorithm.

A total of 33 problems are collected for the present numerical
experimental study, which are selected from various past studies
on mixed-discrete nonlinear programming reported by Eason and
Fenson, Himmmelblau, Gupta and Cha, as well as other literature
sources. The detailed information of each test problem, including
the objective and constraint functions, the upper and lower bounds of
design variables, starting point, optimal solution and computational
cost, are given in Ref. 39.

The experimental study has demonstrated that the MDHGA
method, combining the advantages of random search and determin-
istic search methods, can improve the convergence speed and the
computational efficiency compared with traditional GAs or some
other mixed-discrete methods. It also demonstrated the versatil-
ity and robustness of the proposed method to various kinds of
mixed-discrete engineering optimization problems, even for large
dimensional, highly nonlinear, nondifferentiable and/or nonconvex
problems. Several numerical examples given in details in this paper
further indicate the reliability and efficiency of the MDHGA when
it is used in the MDFMP method for solving mixed-discrete fuzzy
multiobjective optimization problems.

C. Computational Procedure
A computer program has been developed to solve multiobjective

optimization problems in fuzzy design domains with mixed-discrete
design variables. The general computational procedure of MDFMP
is summarized in the following steps:

1) Starting from any trial design vector X0, minimize each of the
individual objective functions fi (X) twice, once with the constraints
g j (X) ≤ b j and a second time with the constraints g j (X) = b j + d j ,
j = 1, 2, . . . , m, using the mixed-discrete hybrid genetic algorithm
just described. Let the corresponding optimum solutions be denoted
as X∗

i,c and X∗
i, f , respectively, i = 1, 2, . . . , k.

2) Construct the matrices [Pc] and [Pf ] as

[Pc] =




F1

(
X∗

1,c

)
F2

(
X∗

1,c

)
. . . Fk

(
X∗

1,c

)
F1

(
X∗

2,c

)
F2

(
X∗

2,c

)
. . . Fk

(
X∗

2,c

)
...

...
...

...

F1

(
X∗

k,c

)
F2

(
X∗

k,c

)
. . . Fk

(
X∗

k,c

)


 (21)

[Pf ] =




F1

(
X∗

1, f

)
F2

(
X∗

1, f

)
. . . Fk

(
X∗

1, f

)
F1

(
X∗

2, f

)
F2

(
X∗

2, f

)
. . . Fk

(
X∗

2, f

)
...

...
...

...

F1

(
X∗

k, f

)
F2

(
X∗

k, f

)
. . . Fk

(
X∗

k, f

)


 (22)

3) Define the minimum and maximum possible values of the
objective functions as




f min
i =

k
min
j = 1

{
fi

(
X∗

j,c

)
, fi

(
X∗

j, f

)}
,

f max
i = k

max
j = 1

{
fi

(
X∗

j,c

)
, fi

(
X∗

j, f

)}
,

i = 1, 2, . . . , k

(23)
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4) Construct the membership functions corresponding to the fuzzy
objectives as

µfi(X) =


0, if fi (X) > f max
i

f max
i − fi (X)

f max
i − f min

i

, if f min
i < fi (X) ≤ f max

i , i = 1, 2, . . . , k

1, if fi (X) ≤ f min
i (24)

5) Represent the fuzzy contraint membership functions using lin-
ear relationships (nonlinear relationships can also be used) as

µgj(X) =


0, if g j (X) > b j + d j

1 −
(

g j (X) − b j

d j

)
, if b j < g j (X) ≤ b j + d j , j = 1, 2, . . . , m

1, if g j (X) ≤ b j (25)

6) Use the fuzzy λ-formulation technique to solve the mixed-
discrete fuzzy multiobjective optimization problem:

Minimize

−λ

Subject to

λ ≤ µfi(X), i = 1, . . . , k

λ ≤ µgj(X), j = 1, . . . , m (26)

This problem can be solved using the MDHGA programming ap-
proaches to find the best compromise solution.

D. Program Flowchart
Figure 4 shows a generalized flowchart of the MDFMP program.

The MDFMP program contains the crisp and fuzzy mathematical
modeling files, input data file, and MDHGA algorithm module,
which is used repeatedly before finding the final optimal solution.
In this sense, it is the reliability and robustness of the MDHGA
algorithms that decide the precision of the optimum results.

III. Illustrative Examples
Three engineering design applications are considered using the

MDFMP program to illustrate the reliability and efficiency of the
proposed approach. In all of the examples, the fuzzy numerical
results are analyzed and compared with the corresponding crisp
results.

A. Two-Bar Truss Optimization
One of the most extensively used examples in the optimization

literature is the two-bar truss structure shown in Fig. 5. The design
of this truss is considered as a simple mixed-discrete fuzzy opti-
mization problem with two objectives. The area of cross section of
the bars (A) and the position of the joints 1 and 2 (x) are treated as
design variables. The truss is assumed to be symmetric about the
y axis. The coordinates of joint 3 are held constant. The weight of
the truss and the displacement of joint 3 are considered as the objec-
tive functions f1 and f2. The stresses induced in the members are
constrained to be smaller than the permissible stress σ0. In addition,
lower and upper bounds are placed on the design variables. Thus
the problem can be mathematically stated as follows:

Minimize

f1(X) = 2ρhx2

√
1 + x2

1

f2(X) = Ph
(
1 + x2

1

)1.5(
1 + x4

1

)0.5

2
√

2Ex2
1 x2

(27)

Fig. 4 Flow diagram of the MDFMP program.

Fig. 5 Two-bar truss.

Subject to

g1(X) = P(1 + x1)
(
1 + x2

1

)0.5

2
√

2x1x2

− σ0 ≤ 0

g2(X) = P(x1 − 1)
(
1 + x2

1

)0.5

2
√

2x1x2

− σ0 ≤ 0

g3(X) = x (l)
1 − x1 ≤ 0, g4(X) = x (l)

2 − x2 ≤ 0

0.1 ≤ x1 ≤ 2.5; x1 = 0.1 + 0.1k, k = 0, 1, . . . , 24

0.1 ≤ x2 ≤ 2.5; x2 = 0.1 + 0.1k, k = 0, 1, . . . , 24 (28)

where x1 = x/h, x2 = A/Amin, E = 30e6 lb/in.2 (207 GPa) is the
Young’s modulus, ρ = 0.283 lb/in.3 (7.8 Mg/m3) is the density of
the material, and x (l)

i = 0.1 is the lower bound on xi . Other data are
chosen as h = 100 in. (2.54 m), Amin = 1 in.2 (6.45e−4 m2), P =
10,000 lb (4.45e4 N), and σ0 = 20,000 lb/in.2 (137.9 MPa).
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Table 1 Optimal results of the two-bar trussa

Crisp optimization42

Starting Weighting method Game theory Fuzzy
Quantity point Min f1 Min f2 (c1 = c2 = 0.5) approach optimization, max λ

Continuous solution
x1 1.0 0.6743 0.8612 0.7635 0.7681 ——
x2 1.0 0.5295 2.5 1.0540 1.1408 ——
f1(X) 80.044 36.1493 186.7361 75.0595 81.4137 ——
f2(X) 0.0471 0.0943 0.0182 0.0442 0.0408 ——

Discrete solution λ = 0.726
x1 (discrete) 1.0 0.5 0.9 —— —— 0.8
x2 (discrete) 1.0 0.6 2.5 —— —— 1.1
f1(X) 80.044 37.9684 190.3688 —— —— 79.7317
f2(X) 0.0471 0.1132 0.0182 —— —— 0.0417

No. of iterations —— 29 24 —— —— 152
No. of fun. calls —— 711 553 —— —— 5414

aValues in boldface denote the best/final values of the objectives.

Fig. 6 Conical convective spine.

The constraint tolerances in the fuzzy optimization problem are
taken as 10% of their respective stated (original) allowable val-
ues. Table 1 shows the discrete optimal solutions obtained in a
fuzzy environment using MDFMP program. The ideal discrete solu-
tions for the individual objectives are given by f1(X) = 37.968 and
f2(X) = 0.018, close to their respective continuous solutions. The
final fuzzy solutions are f1(X) = 79.732 and f2(X) = 0.042 with
optimal point X = (0.8, 1.1). The maximum value of λ = 0.726 indi-
cates that the maximum level of satisfaction (degree of membership)
that can be achieved in the presence of the stated fuzziness in the ob-
jectives and constraints is 0.726. The computational cost of discrete
solution, like number of iterations and number of function calls,
is presented in Table 1 for the comparison of single objective and
multiobjective optimization. The crisp multiobjective optimization
in continuous space42 is also given for comparison, and in a continu-
ous crisp environment different optimization approaches often bring
about different compromise Pareto-optimal solutions. The feasible
design space of the problem, along with different design points of
interest, is shown graphically in Ref. 42. In a discrete fuzzy envi-
ronment, a noninferior compromise solution corresponding to the
optimal supercriterion can be obtained by the selection of an ap-
propriate mixed-discrete fuzzy programming algorithm. Different
multiobjective strategies yield different compromise solutions, and
none can be termed more right than the others simply because of
the nonunicity of the original design problem statement.

B. Design of a Conical Convective Spine
Figure 6 denotes a conical convective spine.43 In this study, the

problem with two conflicting fuzzy design objectives together with
certain constraints is considered using the MDFMP approach. The
first objective function, denoted as V , is the spine volume, and the
second objective function, denoted as B, is the length of the spine.
The problem is to find the length b and diameter d at the base of the
spine to minimize both the objectives V and B, subject to the heat-
transfer constraint Q ≥ (Q0 − ∇Q0), where Q is the actual heat
transfer, Q0 is the required heat transfer, and ∇Q0 is the allowable
variance of Q0. The variable b is discretized into integer multiples
of 0.01 m, and d is taken to be integer multiples of 0.001 m. The
simplified mathematical model is expressed as follows:

Minimize

V (d, b) = πd2b/12, B(b, d) = b (29)

subject to

Q = (
π
/

4
√

b
)
kd2 Mθ0 I2/I1 (30)

where M = √
(4hb/kd), and I1 and I2 are modified Bessel func-

tions. The values of zeroth- and first-order modified Bessel func-
tions I0(u) and I1(u) can be found from the table of Bessel functions
corresponding to any u, which is defined as u = 2M

√
b. The value

of I2(u) can then be obtained from the equation

I2(u) = I0(u) − (2/u)I1(u) (31)

In this study, the target values dopt and bopt are determined using
the same equations used in the conventional analysis44:

dopt = 1.0988
[

Q2
0

/
hkθ2

0

] 1
3 (32)

bopt = 0.7505
[

Q0k
/

h2θ0

] 1
3 (33)

The minimum value of the spine volume is given by

Vmin = πd2
optbopt/12 (34)

and the maximum acceptable volume is assumed as

Vmax = 2Vmin (35)

The membership function for the objective V is defined as

µV =




0, Vmax < V

Vmax − V

Vmax − Vmin
, Vmin < V ≤ Vmax

1, V ≤ Vmin (36)

The ideal spine length Bmin is selected as44

Bmin = 2Q0/πdopthθ0 (37)

and the worst value is set to be the spine length corresponding to
that of Vmin, that is,

Bmax = bopt (38)

The membership function of B is specified as

µB =




0, Bmax < B

Bmax − B

Bmax − Bmin
, Bmin < B ≤ Bmax

1, B ≤ Bmin (39)

Similarly, the membership function of the constraint is chosen as

µQ =




0, Q < Q0 − �Q0

Q − Q0 + �Q0

�Q0
, Q0 − �Q0 ≤ Q < Q0

1, Q ≥ Q0 (40)
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The fuzzy multiobjective optimization problem is formulated as
follows:

Find

X =
{

d

b

}

which maximizes

f (X) = λ

subject to

λ ≤ µV (X), λ ≤ µB(X), λ ≤ µQ(X) (41)

The parameters and design data of the conical convective spine
are listed in Table 2. Substituting these numerical values into ap-
propriate equations, the boundaries of the fuzzy range in the cor-
responding objective membership functions can be obtained. The
optimum spine designs obtained are given in Table 3. In the con-
tinuous design space, the optimal heat transfer is 9.991 W, which
is within the allowable limit of 10 W, and the aspect ratio of the
variables (b/d) is about 16. In the discrete design space, the aspect
ratio came out to be around 16, and the optimal heat transfer is
10.116 W, satisfying the constraint Q > Q0, which means µQ = 1.
The maximum value of λ is λ = µV = 0.9379. Although the discrete
optimum design variables are equal to the appropriate round-off val-
ues of those obtained in the continuous case, the maximum values
of λ are not equal and are not determined by the same function with
the minimum membership value. For the ideal minimum weight
spine the aspect ratio is about 23; hence, the current optimal spine
is smaller in size and is easier to manufacture.

C. Twenty-Five-Bar Truss Design
The 25-bar truss shown in Fig. 7 is considered with three ob-

jective functions: the minimization of the weight, the minimization
of the deflections of nodes 1 and 2, and the maximization of the
fundamental natural frequency of vibration of the truss. The truss is
required to support the two load conditions given in Table 4 and is
designed subject to constraints on member stresses as well as Euler
buckling.42

The member areas are linked into the following groups: A1;
A2 = A3 = A4 = A5; A6 = A7 = A8 = A9; A10 = A11; A12 = A13;
A14 = A15 = A16 = A17; A18 = A19 = A20 = A21; and A22 = A23 =
A24 = A25. Thus a total of eight independent areas are selected as

Table 2 Design parameters of the spine

Parameter Value

Heat conductivity k 200 W/m · ◦C
Heat-transfer coefficient h 10 W/m2 · ◦C
Temperature difference θ0 100◦C
Required heat-transfer rate Q0 10 W
Allowable variance of Q0 �Q0 0.2 W

Table 3 Optimal results of the spine

Fuzzy
Quantity Starting point dopt, bopt Min V Min B optimization, max λ

Continuous case λ = 0.9626
d 0.02 0.0188 —— —— 0.0217
b 0.4 0.4389 —— —— 0.3423
V 4.1888e−5 —— 4.0565e−5 8.1129e−5 4.2082e−5
B 0.4 —— 0.4389 0.3388 0.3423

Discrete case λ = 0.9379
d (discrete) 0.02 0.019 —— —— 0.022
b (discrete) 0.4 0.44 —— —— 0.34
V 4.189e−5 —— 4.1584e−5 8.3168e−5 4.3082e−5
B 0.4 —— 0.44 0.3351 0.34

No. of iterations —— —— —— —— 95
No. of fun. calls —— —— —— —— 5002

the discrete design variables. The objective functions can be stated
as follows:

Minimize

f1(X) =
25∑

i = 1

ρ Aili

f2(X) = (
δ2

1x + δ2
1y + δ2

1z

) 1
2 + (

δ2
2x + δ2

2y + δ2
2z

) 1
2

f3(X) = −
1 (42)

where li is the length of member i ; ρ = 0.1 lb/in.3; δi x , δiy , and
δi z denote the x , y, and z components of the deflection of node
i (i = 1, 2); and ω1 is the fundamental natural frequency of vibration.
The constraints can be formulated as

|σi j (X)| ≤ s, i = 1, 2, . . . , 25, j = 1, 2

σi j (X) ≥ pi (X), i = 1, 2, . . . , 25, j = 1, 2

x (l)
i ≤ xi ≤ x (u)

i , i = 1, 2, . . . , 8 (43)

Fig. 7 Twenty-five-bar truss.

Table 4 Loads acting on 25-bar truss

Joint 1, lb 2, lb 3, lb 6, lb

Load condition 1
Fx 0 0 0 0
Fy 20,000 −20,000 0 0
Fz −5,000 −5,000 0 0

Load condition 2
Fx 1,000 0 500 500
Fy 10,000 10,000 0 0
Fz −5000 −5000 0 0
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where σi j indicates the stress in member i in load condition j ; s is
the allowable stress, taken as 40,000 psi; pi denotes the buckling
stress in member i given by

pi = −100.01π E Ai

8l2
i

, i = 1, 2, . . . , 25 (44)

E is Young’s modulus taken as E = 107 psi, and x (l)
i and x (u)

i are the
lower and upper bounds on xi , set to be 0.1 in.2 and 5.0 in.2, respec-
tively. Each xi is considered as a discrete variable with permissible
values given by the expression

xi = 0.1 + 0.1k, k = 0, 1, . . . , 49

For the fuzzy problem, the behavior constraints are assumed to have
a transition zone defined by

ds = 4000 psi, dpi = 0.1 psi, dx(l)
i

= 0.01 in.2

so that the constraints of the fuzzy optimization problem can be
stated as

|σi j (X)| ≤ s + ds i = 1, 2, . . . , 25, j = 1, 2

σi j (X) ≥ pi (X) − dpi i = 1, 2, . . . , 25, j = 1, 2

x ≥ x (l)
i − dx(i)

i
i = 1, 2, . . . , 8 (45)

The length of each bar is calculated from the coordinates of the
nodes of the truss. The x , y, and z components of the deflection
of node i , δi x , δiy , and δi z ; the fundamental natural frequency of
vibration, ω1; and the stress in member i in load condition j , σi j ,
can be obtained through the finite element analysis of the truss.

The optimization procedure is divided into two stages. In the first
stage, the individual objective functions are optimized subject to
the constraints of Eqs. (43) and (45) using the MDHGA program.
The results are shown in Table 5, together with the results of the
corresponding continuous system given in Ref. 42. The best and
worst possible values of each of the objective functions, which are
used to construct the objective membership functions in the fuzzy
formulation, can be identified from these results. It can be seen
that f max

1 = 1605.60, f min
1 = 249.32, f max

2 = 1.752, f min
2 = 0.308,

f max
3 = −70.226, and f min

3 = −113.043. Table 5 also shows that the

Table 5 Optimum results of individual objective functionsa

Min. of Min. of Max. of
Quantity Starting point weight deflection frequency

Continuous results42

x1 1.0 0.1 3.7931 0.1
x2 1.0 0.8023 5.0 0.7977
x3 1.0 0.7479 5.0 0.7461
x4 1.0 0.1 3.3183 0-.7282
x5 1.0 0.1245 5.0 0.8484
x6 1.0 0.5712 5.0 1.9944
x7 1.0 0.9785 5.0 1.9176
x8 1.0 0.8025 5.0 4.1119
Weight, lb 330.7208 233.0727 1619.3258 600.8789
Deflection, in. 1.5417 1.9250 0.3083 1.3550
Frequency, Hz 68.8648 73.2535 70.2082 108.6224

Discrete results
x1 4.0 0.1 3.0 0.1
x2 4.0 0.9 5.0 0.8
x3 4.0 0.9 5.0 0.8
x4 4.0 0.1 3.0 0.9
x5 4.0 0.2 4.8 0.1
x6 4.0 0.6 5.0 4.8
x7 4.0 1.0 5.0 2.9
x8 4.0 0.8 5.0 5.0
Weight, lb 1322.8828 249.3187 1605.6035 916.5322
Deflection, in. 0.3854 1.7523 0.3084 1.2356
Frequency, Hz 68.8884 70.2258 71.1295 113.0431

aValues in boldface denote the best/final values of the objectives.

ideal maximum frequency in the discrete space is greater than that
in the continuous space. This is because the result is obtained in the
presence of the fuzzy constraints of Eq. (44), in which the relaxed
boundaries are considered.

In the second stage, the following fuzzy optimization problem is
solved: Find X = {x1, x2, x3, x4, x5, x6, x7, x8, λ}, which minimizes
f (X) = −λ:

subject to

λ ≤ µfi(X), i = 1, 2, 3

λ ≤ µgj(X), j = 1, . . . , 108 (46)

where the membership functions are defined by

µ f 1(X) =


0, if f1(X) > 1605.6035

1605.6035 − f1(X)

1605.6035 − 249.3187
, if 249.3187 < f1(X) ≤ 1605.6035

1, if f1(X) ≤ 249.3187 (47)

µ f 2(X) =




0, if f2(X) > 1.7523

1.7523 − f2(X)

1.7523 − 0.3084
, if 0.3084 < f2(X) ≤ 1.7523

1, if f2(X) ≤ 0.3084 (48)

µ f 3(X) =


0, if f3(X) > −70.2258

−70.2258 − f3(X)

−70.2258 − (−113.0431)
, if −113.0431 < f3(X) ≤ −70.2258

1, if f3(X) ≤ −113.0431 (49)

µ|σi j | =




0, if |σi j | > s + bs

1 −
( |σi j | − s

bs

)
, if s < |σi j | ≤ s + bs

1, if |σi j | ≤ s (50)

µσi j =




0, if σi j < pi + dpi

1 −
(

σi j − pi

dpi

)
, if pi + dpi ≤ σi j < pi

1, if σi j ≥ pi (51)

µxi =




0, if xi < xl
i − dxl

i

1 −
(

xl
i − xi

dxl
i

)
, if xl

i − dxl
i
≤ xi < xl

i

1, if xi ≥ xl
i (52)

This fuzzy problem is solved to find the optimum results shown in
Table 6. The best compromise solution has a weight of 761.0665 lb,
a deflection of 0.8311 in., and a fundamental natural frequency of
99.45 Hz, with the maximum level of satisfaction λ = 0.6227. Be-
cause only discrete values can be selected for the variables, no con-
straints are active at the optimum point. When assuming all design
variables are continuous, the same computational procedure is used
in the continuous space and shows a different optimal result with a
little higher level of satisfaction. It is seen that the optimum values
of the design variables x4, x5, and x6 in discrete design space are
greater than those in continuous design space, resulting in worse
results for the minimum weight and deflection, and a better result
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Table 6 Fuzzy optimization results of the 25-bar truss

Crisp optimization: Fuzzy optimization:
Quantity game theory approach maximization of λ

Continuous c1 = 0.1433, c2 = 0.3628, λmax = 0.6918
c3 = 0.4939

x1 0.1 0.0969
x2 1.1464 1.3962
x3 1.3156 1.5619
x4 0.4838 0.3463
x5 0.1 0.0969
x6 1.3315 1.7657
x7 1.8558 2.1434
x8 4.4960 4.2812
Weight, lb 596.5181 658.7802
Deflection, in. 0.9401 0.8061
Frequency, Hz 100.2154 96.7849
No. of iterations —— 116
No. of fun. calls —— 5237

Discrete λmax = 0.6227
x1 —— 0.1
x2 —— 1.3
x3 —— 1.5
x4 —— 2.8
x5 —— 0.5
x6 —— 2.6
x7 —— 2.0
x8 —— 4.6
Weight, lb —— 761.0665
Deflection, in. —— 0.8311
Frequency, Hz —— 99.4500
No. of iterations —— 104
No. of fun. calls —— 5154

for the maximum frequency. The conflicting nature of the objectives
still exists in a fuzzy environment. The comparison of the computa-
tional costs for discrete solution and continuous solution in a fuzzy
environment indicates that when the MDFMP method is used for
continuous optimization problems the fast convergence speed and
high computational efficiency can still be achieved. The crisp opti-
mal design obtained in Ref. 42 using the game theory approach in
the continuous space is also given in Table 6, but there is no com-
putational cost reported from the literature for the comparison with
fuzzy optimization.

IV. Conclusions
A new programming method called mixed-discrete fuzzy mul-

tiobjective programming (MDFMP) is proposed in this paper, in
which the fuzzy λ formulation, the game theory technique, and a
mixed-discrete hybrid genetic algorithm (MDHGA) are combined,
for solving mixed-discrete fuzzy multiobjective optimization prob-
lems. The fuzzy programming algorithm coupled with game theory
can promise a noninferior compromise solution corresponding to the
optimal supercriterion. The MDHGA method, combining the advan-
tages of random search and deterministic search methods, can im-
prove the convergence speed and the computational efficiency com-
pared with traditional genetic algorithms or other mixed-discrete
methods. The present work represents the first attempt at solving
multiobjective programming problems in a mixed-discrete fuzzy en-
vironment. Although the computational cost is high for large-scale
problems, the MDFMP method can be effectively applied to various
kinds of simple or complex engineering optimization problems, even
for highly nonlinear, nondifferentiable, and/or nonconvex problems,
to obtain more realistic and satisfied results in a fuzzy environment.
Three numerical examples—the optimal designs of a two-bar truss,
a conical convective spine, and a 25-bar truss—are used to illustrate
the practical application of the present method and demonstrate its
reliability and efficiency as an advanced global optimum approach.
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